Quasi-periodic solutions of the equation v_{tt}-v_{xx}+v^3=f(v)
dc.contributor.area | Mathematics | en_US |
dc.contributor.author | Baldi, Pietro | en_US |
dc.contributor.department | Functional Analysis and Applications | en_US |
dc.date.accessioned | 2005 | en_US |
dc.date.accessioned | 2011-09-07T20:27:45Z | |
dc.date.available | 2005 | en_US |
dc.date.available | 2011-09-07T20:27:45Z | |
dc.date.issued | 2005 | en_US |
dc.description.abstract | We consider 1D completely resonant nonlinear wave equations of the type vtt -vxx = -v 3 +O(v 4) with spatial periodic boundary conditions. We prove the existence of a new type of quasi-periodic small amplitude solutions with two frequencies, for more general nonlinearities. These solutions turn out to be, at the first order, the superposition of a traveling wave and a modulation of long period, depending only on time. | en_US |
dc.format.extent | 237540 bytes | en_US |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Discrete Contin. Dyn. Syst. 15 (2006) 883-903 | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/1722 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | SISSA;41/2005/M | en_US |
dc.relation.ispartofseries | arXiv.org;math.AP/0506089 | en_US |
dc.title | Quasi-periodic solutions of the equation v_{tt}-v_{xx}+v^3=f(v) | en_US |
dc.type | Preprint | en_US |