Constant T-curvature conformal metrics on 4-manifolds with boundary

dc.contributor.areaMathematicsen_US
dc.contributor.authorNdiaye, Cheikh Birahimen_US
dc.contributor.departmentFunctional Analysis and Applicationsen_US
dc.date.accessioned2007-08-07T12:10:17Zen_US
dc.date.accessioned2011-09-07T20:26:27Z
dc.date.available2007-08-07T12:10:17Zen_US
dc.date.available2011-09-07T20:26:27Z
dc.date.issued2007-08-07T12:10:17Zen_US
dc.description.abstractIn this paper we prove that, given a compact four dimensional smooth Riemannian manifold (M,g) with smooth boundary there exists a metric conformal to g with constant T-curvature, zero Q-curvature and zero mean curvature under generic and conformally invariant assumptions. The problem amounts to solving a fourth order nonlinear elliptic boundary value problem (BVP) with boundary conditions given by a third-order pseudodifferential operator, and homogeneous Neumann one. It has a variational structure, but since the corresponding Euler-Lagrange functional is in general unbounded from below, we look for saddle points. In order to do this, we use topological arguments and min-max methods combined with a compactness result for the corresponding BVP.en_US
dc.format.extent313129 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/1985en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesSISSA;54/2007/Men_US
dc.relation.ispartofseriesarXiv.org;0708.0732en_US
dc.titleConstant T-curvature conformal metrics on 4-manifolds with boundaryen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
math0708.0732v1.pdf
Size:
305.79 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description:
Collections