Linear hyperbolic systems in domains with growing cracks

dc.contributor.areaMathematicsen_US
dc.contributor.authorCaponi, Maicol
dc.date.accessioned2017-01-30T11:27:21Z
dc.date.available2017-01-30T11:27:21Z
dc.date.issued2017-01
dc.description.abstractWe consider the hyperbolic system $\ddot u-{\rm div}\,(\mathbb A\nabla u)=f$ in the time varying cracked domain $\Omega\setminus\Gamma_t$, where the set $\Omega\subset\mathbb R^d$ is open, bounded, and with Lipschitz boundary, the cracks $\Gamma_t$, $t\in[0,T]$, are closed subsets of $\overline\Omega$, increasing with respect to inclusion, and $u(t):\Omega\setminus\Gamma_t\to\mathbb R^d$ for every $t\in[0,T]$. We assume the existence of suitable regular changes of variables, which reduce our problem to the transformed system $\ddot v-{\rm div}\,(\mathbb B\nabla v)+\mathbf a\nabla v -2\nabla\dot vb=g$ on the fixed domain $\Omega\setminus\Gamma_0$. Under these assumptions, we obtain existence and uniqueness of weak solutions for these two problems. Moreover, we show an energy equality for the functions $v$, which allows us to prove a continuous dependence result for both systems.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/35271
dc.language.isoenen_US
dc.miur.area1en_US
dc.relation.ispartofseriesSISSA;05/2017/MATE
dc.rightsThe authoren_US
dc.subjectsecond order linear hyperbolic systemsen_US
dc.subjectdynamic fracture mechanicsen_US
dc.subjectcracking domainsen_US
dc.titleLinear hyperbolic systems in domains with growing cracksen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LinHypSys_Caponi.pdf
Size:
418.19 KB
Format:
Adobe Portable Document Format
Description:
preprint
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.3 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections