Where best to place a Dirichlet condition in an anisotropic membrane?
dc.contributor.author | Tilli, Paolo | |
dc.contributor.author | Zucco, Davide | |
dc.date.accessioned | 2014-11-10T12:19:50Z | |
dc.date.available | 2014-11-10T12:19:50Z | |
dc.date.issued | 2014 | |
dc.description.abstract | We study a shape optimization problem for the first eigenvalue of an elliptic operator in divergence form, with non constant coefficients, over a fixed domain $\Omega$. Dirichlet conditions are imposed along $\partial\Omega$ and, in addition, along a set $\Sigma$ of prescribed length ($1$-dimensional Hausdorff measure). We look for the best shape and position for the supplementary Dirichlet region $\Sigma$ in order to maximize the first eigenvalue. We characterize the limit distribution of the optimal sets, as their prescribed length tends to infinity, via $\Gamma$-convergence. | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/7481 | |
dc.language.iso | en_US | en_US |
dc.publisher | SISSA | en_US |
dc.relation.ispartofseries | SISSA;61/2014/MATE | |
dc.subject | first Dirichlet eigenvalue, optimization, Γ-convergence | en_US |
dc.title | Where best to place a Dirichlet condition in an anisotropic membrane? | en_US |
dc.type | Preprint | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- tilli_zucco_varifold_preprint_SISSA.pdf
- Size:
- 387.9 KB
- Format:
- Adobe Portable Document Format
- Description:
- Preprint
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 2.31 KB
- Format:
- Item-specific license agreed upon to submission
- Description: