Where best to place a Dirichlet condition in an anisotropic membrane?

dc.contributor.authorTilli, Paolo
dc.contributor.authorZucco, Davide
dc.date.accessioned2014-11-10T12:19:50Z
dc.date.available2014-11-10T12:19:50Z
dc.date.issued2014
dc.description.abstractWe study a shape optimization problem for the first eigenvalue of an elliptic operator in divergence form, with non constant coefficients, over a fixed domain $\Omega$. Dirichlet conditions are imposed along $\partial\Omega$ and, in addition, along a set $\Sigma$ of prescribed length ($1$-dimensional Hausdorff measure). We look for the best shape and position for the supplementary Dirichlet region $\Sigma$ in order to maximize the first eigenvalue. We characterize the limit distribution of the optimal sets, as their prescribed length tends to infinity, via $\Gamma$-convergence.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/7481
dc.language.isoen_USen_US
dc.publisherSISSAen_US
dc.relation.ispartofseriesSISSA;61/2014/MATE
dc.subjectfirst Dirichlet eigenvalue, optimization, Γ-convergenceen_US
dc.titleWhere best to place a Dirichlet condition in an anisotropic membrane?en_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tilli_zucco_varifold_preprint_SISSA.pdf
Size:
387.9 KB
Format:
Adobe Portable Document Format
Description:
Preprint
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.31 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections