On functions having coincident ρ-norms

dc.contributor.authorKlun, Giuliano
dc.date.accessioned2019-03-25T15:51:18Z
dc.date.available2019-03-25T15:51:18Z
dc.date.issued2019-03-25
dc.description13 pagesen_US
dc.description.abstractIn a measure space (X;A; μ) we consider two measurable functions ƒ; g : E → R for some E ∈ A. We characterize the property of having equal p-norms when ρ varies in an infinite set P in [1;+∞). In a first theorem we consider the case of bounded functions when P is unbounded with ∑p∈P(1/p) = +∞ . The second theorem deals with the possibility of unbounded functions, when P has a finite accumulation point in [1, + ∞ ).en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/35332
dc.language.isoenen_US
dc.publisherSISSAen_US
dc.relation.ispartofseriesSISSA;03/2019/MATE
dc.subjectLebesgue integrable functionsen_US
dc.subjectMellin transformen_US
dc.titleOn functions having coincident ρ-normsen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Norme_p_27-1.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Description:
Preprint
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections