Multiplicity of solutions for a mean field equation on compact surfaces
dc.contributor.area | Mathematics | en_US |
dc.contributor.author | De Marchis, Francesca | en_US |
dc.contributor.department | Functional Analysis and Applications | en_US |
dc.date.accessioned | 2010-06-29T12:18:35Z | en_US |
dc.date.accessioned | 2011-09-07T20:20:57Z | |
dc.date.available | 2010-06-29T12:18:35Z | en_US |
dc.date.available | 2011-09-07T20:20:57Z | |
dc.date.issued | 2010-06-29T12:18:35Z | en_US |
dc.description.abstract | We consider a scalar field equation on compact surfaces which has variational structure. When the surface is a torus and a physical parameter ρ belongs to (8π,4π al quadrato) we show under some extra assumptions that, as conjectured in [8], the functional admits at least three saddle points other than a local minimum. | en_US |
dc.format.extent | 171758 bytes | en_US |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/3887 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | SISSA;40/2010/M | en_US |
dc.title | Multiplicity of solutions for a mean field equation on compact surfaces | en_US |
dc.type | Preprint | en_US |