On the pure jump nature of crack growth for a class of pressure-sensitive elasto-plastic materials

dc.contributor.areamathematicsen_US
dc.contributor.authorDal Maso, Gianni
dc.contributor.authorToader, Rodica
dc.date.accessioned2021-01-19T12:21:55Z
dc.date.available2021-01-19T12:21:55Z
dc.date.issued2021-01-19
dc.description.abstractIn the framework of a model for the quasistatic crack growth in pressure sensitive elasto-plastic materials in the planar case, we study the properties of the length l (t) of the crack as a function of time. We prove that, under suitable technical assumptions on the crack path, the monotone function l is a pure jump function.en_US
dc.identifier.urihttps://openscience.sissa.it/handle/1963/35416
dc.language.isoenen_US
dc.relation.ispartofseriesSISSA;06/2021/MATE
dc.subjectfracture mechanicsen_US
dc.subjectplasticityen_US
dc.subjectquasistatic evolutionen_US
dc.subjectrate-independent problemsen_US
dc.titleOn the pure jump nature of crack growth for a class of pressure-sensitive elasto-plastic materialsen_US
dc.typePreprinten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DM-Toa-20-SISSA.pdf
Size:
672.83 KB
Format:
Adobe Portable Document Format
Description:
Preprint
Collections