On the pure jump nature of crack growth for a class of pressure-sensitive elasto-plastic materials
dc.contributor.area | mathematics | en_US |
dc.contributor.author | Dal Maso, Gianni | |
dc.contributor.author | Toader, Rodica | |
dc.date.accessioned | 2021-01-19T12:21:55Z | |
dc.date.available | 2021-01-19T12:21:55Z | |
dc.date.issued | 2021-01-19 | |
dc.description.abstract | In the framework of a model for the quasistatic crack growth in pressure sensitive elasto-plastic materials in the planar case, we study the properties of the length l (t) of the crack as a function of time. We prove that, under suitable technical assumptions on the crack path, the monotone function l is a pure jump function. | en_US |
dc.identifier.uri | https://openscience.sissa.it/handle/1963/35416 | |
dc.language.iso | en | en_US |
dc.relation.ispartofseries | SISSA;06/2021/MATE | |
dc.subject | fracture mechanics | en_US |
dc.subject | plasticity | en_US |
dc.subject | quasistatic evolution | en_US |
dc.subject | rate-independent problems | en_US |
dc.title | On the pure jump nature of crack growth for a class of pressure-sensitive elasto-plastic materials | en_US |
dc.type | Preprint | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- DM-Toa-20-SISSA.pdf
- Size:
- 672.83 KB
- Format:
- Adobe Portable Document Format
- Description:
- Preprint